105 research outputs found

    Relativistic spin precession in the binary PSR J1141-6545

    Full text link
    PSR J1141-6545 is a precessing binary pulsar that has the rare potential to reveal the two-dimensional structure of a non-recycled pulsar emission cone. It has undergone 25deg\sim 25 \deg of relativistic spin precession in the 18\sim18 years since its discovery. In this paper, we present a detailed Bayesian analysis of the precessional evolution of the width of the total intensity profile, to understand the changes to the line-of-sight impact angle (β\beta) of the pulsar using four different physically motivated prior distribution models. Although we cannot statistically differentiate between the models with confidence, the temporal evolution of the linear and circular polarisations strongly argue that our line-of-sight crossed the magnetic pole around MJD 54000 and that only two models remain viable. For both these models, it appears likely that the pulsar will precess out of our line-of-sight in the next 353-5 years, assuming a simple beam geometry. Marginalising over β\beta suggests that the pulsar is a near-orthogonal rotator and provides the first polarization-independent estimate of the scale factor (A\mathbb{A}) that relates the pulsar beam opening angle (ρ\rho) to its rotational period (PP) as ρ=AP0.5\rho = \mathbb{A}P^{-0.5} : we find it to be >6 deg s0.5> 6 \rm~deg~s^{0.5} at 1.4 GHz with 99\% confidence. If all pulsars emit from opposite poles of a dipolar magnetic field with comparable brightness, we might expect to see evidence of an interpulse arising in PSR J1141-6545, unless the emission is patchy.Comment: Accepted for publication in Astrophysical Journal Letter

    Timing of young radio pulsars - I. Timing noise, periodic modulation, and proper motion

    Get PDF
    The smooth spin-down of young pulsars is perturbed by two non-deterministic phenomenon, glitches and timing noise. Although the timing noise provides insights into nuclear and plasma physics at extreme densities, it acts as a barrier to high-precision pulsar timing experiments. An improved methodology based on Bayesian inference is developed to simultaneously model the stochastic and deterministic parameters for a sample of 85 high-E˙\dot{E} radio pulsars observed for \sim 10 years with the 64-m Parkes radio telescope. Timing noise is known to be a red process and we develop a parametrization based on the red-noise amplitude (AredA_{\rm red}) and spectral index (β\beta). We measure the median AredA_{\rm red} to be 10.41.7+1.8-10.4^{+1.8}_{-1.7} yr3/2^{3/2} and β\beta to be 5.23.8+3.0-5.2^{+3.0}_{-3.8} and show that the strength of timing noise scales proportionally to ν1ν˙0.6±0.1\nu^{1}|\dot{\nu}|^{-0.6\pm0.1}, where ν\nu is the spin frequency of the pulsar and ν˙\dot{\nu} its spin-down rate. Finally, we measure significant braking indices for 19 pulsars, proper motions for two pulsars and discuss the presence of periodic modulation in the arrival times of five pulsars

    Timing analysis for 20 millisecond pulsars in the Parkes Pulsar Timing Array

    Get PDF
    We present timing models for 20 millisecond pulsars in the Parkes Pulsar Timing Array. The precision of the parameter measurements in these models has been improved over earlier results by using longer data sets and modelling the non-stationary noise. We describe a new noise modelling procedure and demonstrate its effectiveness using simulated data. Our methodology includes the addition of annual dispersion measure (DM) variations to the timing models of some pulsars. We present the first significant parallax measurements for PSRs J1024-0719, J1045-4509, J1600-3053, J1603-7202, and J1730-2304, as well as the first significant measurements of some post-Keplerian orbital parameters in six binary pulsars, caused by kinematic effects. Improved Shapiro delay measurements have resulted in much improved pulsar mass measurements, particularly for PSRs J0437-4715 and J1909-3744 with Mp=1.44±0.07M_p=1.44\pm0.07 MM_\odot and Mp=1.47±0.03M_p=1.47\pm0.03 MM_\odot respectively. The improved orbital period-derivative measurement for PSR J0437-4715 results in a derived distance measurement at the 0.16% level of precision, D=156.79±0.25D=156.79\pm0.25 pc, one of the most fractionally precise distance measurements of any star to date.Comment: 21 pages, 5 figures, 7 tables. Accepted for publication in MNRA

    Long Term Variability of a Black Widow's Eclipses -- A Decade of PSR J2051-0827

    Get PDF
    In this paper we report on 10\sim10 years of observations of PSR J2051-0827, at radio frequencies in the range 110--4032 MHz. We investigate the eclipse phenomena of this black widow pulsar using model fits of increased dispersion and scattering of the pulsed radio emission as it traverses the eclipse medium. These model fits reveal variability in dispersion features on timescales as short as the orbital period, and previously unknown trends on timescales of months--years. No clear patterns are found between the low-frequency eclipse widths, orbital period variations and trends in the intra-binary material density. Using polarisation calibrated observations we present the first available limits on the strength of magnetic fields within the eclipse region of this system; the average line of sight field is constrained to be 10410^{-4} G B102\lesssim B_{||} \lesssim 10^2 G, while for the case of a field directed near-perpendicular to the line of sight we find B0.3B_{\perp} \lesssim 0.3 G. Depolarisation of the linearly polarised pulses during the eclipse is detected and attributed to rapid rotation measure fluctuations of σRM100\sigma_{\text{RM}} \gtrsim 100 rad m2^{-2} along, or across, the line of sights averaged over during a sub-integration. The results are considered in the context of eclipse mechanisms, and we find scattering and/or cyclotron absorption provide the most promising explanation, while dispersion smearing is conclusively ruled out. Finally, we estimate the mass loss rate from the companion to be M˙C1012M\dot{M}_{\text{C}} \sim 10^{-12} M_\odot yr1^{-1}, suggesting that the companion will not be fully evaporated on any reasonable timescale

    Five new real-time detections of Fast Radio Bursts with UTMOST

    Get PDF
    We detail a new fast radio burst (FRB) survey with the Molonglo Radio Telescope, in which six FRBs were detected between June 2017 and December 2018. By using a real-time FRB detection system, we captured raw voltages for five of the six events, which allowed for coherent dedispersion and very high time resolution (10.24 μ\mus) studies of the bursts. Five of the FRBs show temporal broadening consistent with interstellar and/or intergalactic scattering, with scattering timescales ranging from 0.16 to 29.1 ms. One burst, FRB181017, shows remarkable temporal structure, with 3 peaks each separated by 1 ms. We searched for phase-coherence between the leading and trailing peaks and found none, ruling out lensing scenarios. Based on this survey, we calculate an all-sky rate at 843 MHz of 9839+5998^{+59}_{-39} events sky1^{-1} day1^{-1} to a fluence limit of 8 Jy-ms: a factor of 7 below the rates estimated from the Parkes and ASKAP telescopes at 1.4 GHz assuming the ASKAP-derived spectral index α=1.6\alpha=-1.6 (FνναF_{\nu}\propto\nu^{\alpha}). Our results suggest that FRB spectra may turn over below 1 GHz. Optical, radio and X-ray followup has been made for most of the reported bursts, with no associated transients found. No repeat bursts were found in the survey.Comment: 13 pages, 11 figures, submitted to MNRA

    The UTMOST Survey for Magnetars, Intermittent pulsars, RRATs and FRBs I: System description and overview

    Get PDF
    We describe the ongoing `Survey for Magnetars, Intermittent pulsars, Rotating radio transients and Fast radio bursts' (SMIRF), performed using the newly refurbished UTMOST telescope. SMIRF repeatedly sweeps the southern Galactic plane performing real-time periodicity and single-pulse searches, and is the first survey of its kind carried out with an interferometer. SMIRF is facilitated by a robotic scheduler which is capable of fully autonomous commensal operations. We report on the SMIRF observational parameters, the data analysis methods, the survey's sensitivities to pulsars, techniques to mitigate radio frequency interference and present some early survey results. UTMOST's wide field of view permits a full sweep of the Galactic plane to be performed every fortnight, two orders of magnitude faster than previous surveys. In the six months of operations from January to June 2018, we have performed 10\sim 10 sweeps of the Galactic plane with SMIRF. Notable blind re-detections include the magnetar PSR J1622-4950, the RRAT PSR J0941-3942 and the eclipsing pulsar PSR J1748-2446A. We also report the discovery of a new pulsar, PSR J1705-54. Our follow-up of this pulsar with the UTMOST and Parkes telescopes at an average flux limit of 20\leq 20 mJy and 0.16\leq 0.16 mJy respectively, categorizes this as an intermittent pulsar with a high nulling fraction of <0.002< 0.002Comment: Submitted to MNRAS, comments welcom

    2018 X-Ray and Radio Outburst of Magnetar XTE J1810–197

    Get PDF
    We present the earliest X-ray observations of the 2018 outburst of XTE J1810−197, the first outburst since its 2003 discovery as the prototypical transient and radio-emitting anomalous X-ray pulsar (AXP). The Monitor of All-sky X-ray Image (MAXI) detected XTE J1810−197 immediately after a November 20–26 visibility gap, contemporaneous with its reactivation as a radio pulsar, first observed on December 8. On December 13 the Nuclear Spectroscopic Telescope Array (NuSTAR) detected X-ray emission up to at least 30 keV, with a spectrum well-characterized by a blackbody plus power-law model with temperature kT = 0.74 ± 0.02 keV and photon index Γ = 4.4 ± 0.2 or by a two-blackbody model with kT = 0.59 ± 0.04 keV and kT = 1.0 ± 0.1 keV, both including an additional power-law component to account for emission above 10 keV, with Γ_h = −0.2 ± 1.5 and Γ_h = 1.5 ± 0.5, respectively. The latter index is consistent with hard X-ray flux reported for the nontransient magnetars. In the 2–10 keV bandpass, the absorbed flux is 2 × 10^(−10) erg s^(−1) cm^(−2), a factor of 2 greater than the maximum flux extrapolated for the 2003 outburst. The peak of the sinusoidal X-ray pulse lags the radio pulse by ≈0.13 cycles, consistent with their phase relationship during the 2003 outburst. This suggests a stable geometry in which radio emission originates on magnetic field lines containing currents that heat a spot on the neutron star surface. However, a measured energy-dependent phase shift of the pulsed X-rays suggests that all X-ray emitting regions are not precisely coaligned

    Gravitational lensing as a probe of compact object population in the Galaxy

    Get PDF
    The population of solitary compact objects in the Galaxy is very diffcult to investigate. In this paper we analyze the possibility of using microlensing searches to detect and to analyze the properties of the solitary black holes and neutron stars. Evolution of single and binary stars is considered using the StarTrack population synthesis code. We investigate the properties of the Galactic population of compact objects numerically. We find that the compact object lensing events are concentrated in a region with the radius of 5\approx 5 degrees around the Galactic center. The distribution of masses of the lenses for the models we consider differs but only slightly from the underlying massdistribution. The expected detection rates are of the order of a few per year.Comment: Submitted to Astronomy and Astrophysic
    corecore